|
1. A. P. F. Araujo, J. Bachiega Jr., L. R. de Carvalho, and A. P. F. Araujo, “Computational Resource Allocation in Fog Computing: A Comprehensive Survey,” ACM Computing Surveys, vol. 55, no. 14s, Mar. 2023. 2. S. Duan, D. Wang, J. Ren, F. Lyu, Y. Zhang, H. Wu, and X. Shen, “Distributed Artificial Intelligence Empowered by End-Edge-Cloud Computing: A Survey,” IEEE Communications Surveys & Tutorials, vol. 25, no. 1, pp. 591–624, Jan. 2022. 3. M. M. Shirmohammadi and M. Chahhardi, “ESEP: A Stable Cluster Head Selection Protocol in Heterogeneous Wireless Sensor Networks with Sleep and Wake Modes,” in *Proceedings of the Computer, Electrical and Information Technology Conference*, Islamic Azad University, Hamadan Branch, Hamadan, vol. 1, 2007 4. M. M. Shirmohammadi, M. Chahardoli, and H. Zargari, Introduction to Multimedia. Hamadan: Daneshjo, 2011. ISBN: 971-964-543-104-2. 5. M. M. Shirmohammadi, AI Unboxed: Tools & Techniques for the Future, 1st ed., vol. 1. [Online]. Available: https://www.researchgate.net/publication/389659219_AI_UNBOXED_TOOLS_TECHNIQUES_FOR_THE_FUTURE#fullTextFileContent, Mar. 2025, p. 144. 6. Y. Zhang, L. Chen, and W. Wang, “Hybrid Fog-Cloud Architectures for Distributed Deep Learning,” IEEE Transactions on Cloud Computing, vol. 11, no. 2, pp. 145–160, 2023. 7. X. Chen and H. Zhang, “Privacy-Preserving Federated Learning in Fog Environments,” ACM SIGCOMM Computer Communication Review, vol. 53, no. 4, pp. 78–92, 2022 8. R. Wang et al., “Q-Learning-Based Resource Allocation for Fog-Assisted AI Systems,” Future Generation Computer Systems, vol. 135, pp. 300–315, 2023 9. S. Kumar et al., “Adversarial Robustness in Fog-Based Distributed AI Systems,” IEEE Internet of Things Journal, vol. 13, no. 1, pp. 45–59, 2024 10. A. Gupta et al., “Fog Computing for Smart City Applications: A Comprehensive Review,” IEEE Access, vol. 11, pp. 10245–10267, 2023 11. J. Li and Q. Wang, “Secure Medical Data Analytics Using Federated Learning in Fog Computing,” Nature Communications, vol. 13, no. 1, p. 6542, 2022 12. Y. Zhang, M. Chen, Y. Li, and L. Wang, “A Q-learning-based dynamic task offloading algorithm for mobile edge computing,” IEEE Access, vol. 8, pp. 13979–13989, 2020 13. L. Chen, T. Jiang, and Y. Zhu, “Resource allocation for edge computing using dueling DQN,” IEEE Internet Things Journal, vol. 8, no. 3, pp. 1876–1886, Feb. 2021 14. W. Wang, B. Li, and H. Zhang, “Energy-efficient resource management with double deep Q-network in vehicular edge computing,” IEEE Transactions on Vehicular Technology, vol. 71, no. 2, pp. 1505–1519, 2022 15. M. M. Shirmohammadi, M. Chahardoli, Wireless Sensor Networks. Hamadan: Islamic Azad University, Hamadan Branch, 2012. ISBN: 978-964-543-103-5
|