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Abstract 

Intrusions and attacks are critical problems in network security and privacy. There are many studies on intrusion detection, 

most of which use traditional data mining algorithms to detect intrusion. Intrusion detection using deep learning is a new 

approach to cyber security. Unbalanced data is one of the major challenges in intrusion detection in which the number of 

samples of some classes (majority) is much higher than other classes (minority) which increases the rate of incorrect 

classifications for minority classes and the created model tends towards the majority class. Although some studies have tried 

to address this issue by using resampling techniques, they are not effective. This research uses deep learning that combines the 

phases of classification and automatic feature extraction. Unlike previous approaches, the proposed method addresses the class 

imbalance problem during model training. The developed mechanism uses a cost-sensitive learning strategy and determines a 

cost for each misclassification based on the class distribution. These costs are considered during training when there are 

incorrect classifications to fit the data. The efficiency of the designed approach is assessed using different criteria such as 

accuracy, recall, precision, and F1-Score by the same method. Experiments have shown that the proposed method can improve 

the classification performance by an average of 3%. 
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1. Introduction 

Security and privacy issues are the major challenges 

in computer networks because many computer 

networks (such as the Internet of Things) are based 

on the conventional Internet model without security 

[1][2]. Network attacks occur for a variety of 

reasons, such as obtaining sensitive information, 

disrupting data integrity, and damaging services in 

computer networks. Intrusion Detection System 

(IDS) is a second line of defense mechanism that is 

often used in conjunction with other security 

mechanisms such as access control and encryption 

techniques to secure IoT networks against cyber-

attacks. To ensure the security of computer 

networks, the use of IDS is very important to prevent 

rapid attacks and protect privacy [3]. IDS 

components can be contracted in a hierarchical 

architecture to transfer the parsed data in layers. 

Deep learning (DL) is one of subfields of machine 

learning has attracted attention in intrusion 

detection. This is because hand-crafted features are 

not required in DL algorithms that make them 

powerful extracting knowledge without the help of 

experts [4]. In computer networks, the distribution 

ratio between some classes is significantly higher 

than other classes. This issue refers to the class 

imbalance problem, where some attacks are low-

frequent and cannot be detected carefully because 

there a bias towards the high-frequency classes. 

Thus, the accuracy of the classifier is high for the 

majority classes, while the accuracy is low for the 

minority attacks. Resampling strategies, such as 

undersampling and oversampling are simple 

techniques, but they introduce some challenges, 

such as information loss, high complexity, and over-

fitting [1]. 

To address the challenges related to the resampling 

strategies, cost-sensitive learning is a useful strategy 

that builds DL models strong against unbalanced 

datasets. In this strategy, each misclassification is 

given a cost and these costs are considered during 

DL model training in loss function. A higher cost is 

often assigned to the minority class than the majority 

one. Cost-sensitive learning has achieved promising 

results in DL algorithms, such as auto-encoder 

[5][6][1], Deep Belief Networks (DBN) [7], 

Convolution neural network (CNN) [8], deep neural 

network (DNN) [9], and multilayer perceptron 

(MLP) [10].  

In this study, an intrusion detection framework for 

computer network security is developed based on a 

cost-sensitive DL approach. We integrate cost-

sensitive learning into two DL classifiers, including 

SAE and CNN. In both models, the cross-entropy 

cost function is improved considering class-

dependent costs. In each epoch of DL training, 

diverse cost matrices are generated according data 

distribution. In this way, strong representations can 
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be trained. To demonstrate the superiority of our 

proposed approaches over other DL-based intrusion 

detection methods, the UNSW-NB15 and NSL-

KDD datasets are used. 

Structure of this study is as follows: Section 2 

summarizes related works on deep learning-based 

intrusion detection methods. Section 3 presents a 

cost-sensitive learning-aided DL mechanism for 

mitigating impact of imbalanced data on intrusion 

detection systems. Some experiments are carried in 

Section 4 to evaluate performance of our developed 

model. Finally, Section 5 presents a conclusion of 

the paper. 

 

2. Related works 

In recent years, DL has attracted a great attention in 

network intrusion detection. Javaid et al. [11] 

developed an IDS using self-taught learning based on 

sparse autoencoder. They evaluated their system on 

NSL-KDD dataset. This system includes two phases: 

high-level feature representations are extracted from 

unlabeled data using unsupervised learning at the 

first stage. In the second phase, the learnt features are 

used for classification task on the labeled data. Non-

symmetric deep auto-encoder was used by Shone et 

al. [12] for unsupervised learning. A classifier by 

combining stacked auto-encoder and random forest 

was developed. The authors analyzed their model 

using the KDD Cup99 and NSL-KDD datasets. A 

two-stage SAE model was developed by Khan et al. 

[13]. A binary classification between normal or 

abnormal traffic is done in the first phase and the 

attacks type is detected in the second phase. 

Vinayakumar et al. [14] developed network-based 

IDS and host-based IDS by modeling a MLP. They 

used text representation methods in NLP (e.g., Bag-

of-Words (BoW), N-grams, and Keras Embedding) 

to capture the contextual information in the form of 

feature vectors. Ge et al. [15] developed a feed-

forward neural network (FNN) architecture with 

three hidden layers and 512 neurons in each layer. 

They also used three regularization techniques of L1, 

L2, and dropout.  

An IDS using recurrent neural networks (RNN) was 

developed in [16]. Both binary detection and 

multiclass detection were considered. Diverse 

models with different learning rate and neurons are 

trained. The performance of the models was 

evaluated on NSL-KDD dataset. Tang et al. [17] built 

a DNN-based intrusion detection mechanism for 

Software Defined Networking (SDN). The DNN 

model included three hidden layers with 12, 6, and 3 

neurons, respectively. The model was trained on the 

NSL-KDD Dataset.  

Some studies have combined DL models to 

strengthen intrusion detection systems. A 

combination of CNN and weight-dropped Long 

Short-Term Memory (LSTM) was developed, where 

features are extracted using a two-layer CNN 

followed by a weight-dropped LSTM [18]. A deep 

blockchain framework based on Bidirectional 

LSTM was designed in [19] to provide secure data 

exchange and migration between multi-cloud IoT 

services. A two-stage mechanism was developed in 

[20], where a single-hidden layer was employed at 

the first stage to distinguish normal and intrusion 

traffics. In the second phase, DNN and LSTM 

techniques were applied to identify intrusion 

activities. A combination of DL and support vector 

machines (SVM) was introduced in [21]. Sparse 

autoencoder was employed for feature learning and 

dimensionality reduction. The classification is done 

using SVM. 

 Zhang et al. [22] developed a self-adaptive DBN 

model based on an improved version of the genetic 

algorithm to find the best values of hidden layers and 

neurons in each layer adaptively. DL-based 

Intrusion Detection System (DLIDS) [23] is a 

combination of Spider Monkey Optimization 

algorithm (SMO) and the Stacked-Deep Polynomial 

Network (SDPN) for IoT security. In the 

preprocessing step, Minkowski distance and nearest 

neighbour computation are applied to clean the 

dataset. The SMO algorithm is then employed for 

feature selection. 

 

3. Proposed methodology 

This section presents a cost-based DL model 

including four phases: data preprocessing, cost 

matrix generation, DL architecture, and improved 

loss function (Fig. 1). 

 
Fig. 1. The framework for our methodology 

 

3.1. Data Preprocessing 

In the preprocessing stage, irrelevant features like 

the source/destination IPs and port numbers are first 

deleted. Nominal columns (e.g., “proto”, “state”, 

and “service”) are then converted to numerical 

values through the ordinal encoding technique. We 

apply Min-Max normalization to transform all 

values in the range [0,1] (Eq. 1). This is because the 

difference between values is large that affects the 

convergence rate and model training. 

 

𝑓𝑖,𝑗 =
𝑦𝑖,𝑗−min(𝑦𝑖)

max(𝑦𝑖)−min(𝑦𝑖)
   

    (1) 

where 𝑦𝑖,𝑗is the value j of the feature i and 𝑦𝑖  

represents the feature i. 

 

3.2. Cost matrix generation 

Generating a cost matrix is a critical task in cost-

sensitive learning to determine misclassification 



                                                                                                 Deep learning and a cost-sensitive strategy for intrusion52          

cost of each category. The cost matrix is adopted 

when computing loss value. Unlike many previous 

approaches for cost matrix generation that the 

user/specialist manually determines the costs for 

each class, our presented technique uses a 

formulation to automatically define the costs 

without user intervention. These cost values are 

defined by calculating the data statistics of 

categories. Fig. 2 depicts a general framework of 

cost matrix generation. 

 
Fig. 2 Cost matrix generation process 

 

First, data distribution of each category is 

determined to be considered in generating the cost 

matrix based on a heuristic designed for cost 

definition. Low-frequency classes are given high 

costs and high-frequency classes are given low cost 

values. Each cost of classifying category i as 

category j is determined using Eq. 2. 

{
𝛾𝑖,𝑗 =

𝛼𝑖

𝛼𝑖+𝛼𝑗
𝑖, 𝑗 = 1,2, … , 𝐶

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜𝑖 ≠ 𝑗
 

     (2) 

The terms 𝛼𝑖 and 𝛼𝑗 are distribution of classes i and 

j, respectively. If there is no sample for a class in a 

partition (i.e., 𝛼𝑖 or 𝛼𝑗=0), the costs related to the 

class is determined to be zero. Indeed, all cells in the 

corresponding row and column are set to be zero.  

In the cost matrix, the diagonal row refers to the 

optimal vector. It indicates the correct classifications 

and the values in this vector are zero. The costs in 

other cells are non-negative (i.e., 𝛾𝑖,𝑗 > 0). Table 1 

presents an example of a cost matrix for a three-

classification task.  

 

Table 1: An example of a cost matrix with three 

classes 

 Predicted 

C1 

Predicted 

C2 

Predicted 

C3 

Actual 

C1 

0 𝛾1,2 𝛾1,3 

Actual 

C2 

𝛾2,1 0 𝛾2,3 

Actual 

C3 

𝛾3,1 𝛾3,2 0 

3.3. Deep learning models architectures 

The architectures of our developed models are 

described in this section. Our designed CNN model 

consists of a 1D input layer and 3 convolution layers 

(Fig. 3). Each convolution layer is followed by a 

ReLU activator and a max-pooling layer. The size of 

each filter in the convolution layer is 8×1 with 

stride=1. Moreover, the size of the max-pooling is 

4×1 with stride=2. Batch normalization and a 

dropout layer with the ratio of 0.05 are applied after 

each ReLu. At the end of the CNN model, two fully-

connected layers are employed to detect attacks. 

 

 
Fig. 3 Our CNN architecture 

 

Our SAE architecture proposed in this study has two 

auto-encoders, each with two encoding layers and 

two decoding layers (Fig. 4). 

 
Fig. 4. The proposed SAE architecture 

 

3.4. Cost-Sensitive loss function 

A new cross-entropy loss function is proposed in 

this section with the aim of making DL models more 

sensitive to misclassification of the low-frequency 

attacks than the majority categories. During the 

training phase, class-related costs are considered to 

optimize DL parameters according to the class 

imbalance problem. Unlike data-level techniques 

(e.g., oversampling and undersampling), the 

developed models do not change the data 

distribution, which results in reducing computation 

time of the training process. 

Our new loss function aims to penalize 

misclassifications according to corresponding costs. 

This penalty value is larger when a low-frequency 

sample is detected as a high-frequency category than 

when a high-frequency sample is wrongly detected 

as a low-frequency class. These misclassification 

costs are found the cost matrix. This technique 

intends to enhance the cross-entropy loss function 

by injecting the class-dependent costs. In fact, the 

output of the Softmax layer, which is in the form of 

probabilities, is considered as the input of the cost 

function to calculate the amount of cost-sensitive 

loss. The reason for choosing cross-entropy is that it 
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can perform better than other cost functions in most 

cases. Besides, cross-entropy can prevent the 

slowing down of learning, which is one of the 

problems with the mean square error (MSE) 

function in learning. 

Before illustration of our cost-sensitive DL 

mechanism, how the Softmax layer works is 

explained. Let us the output layer is{𝑋, 𝑌} =
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑚 , 𝑦𝐶)}, where 𝑥𝑖 ∈ ℝ𝑑×1 

and 𝑦𝑖 ∈ ℝ𝐶×1 (d is the number of neurons in the last 

layer and C is the number of categories). Softmax 

layer calculates the probability that object i (𝑥𝑖) 

belongs to each class, as expresses bellows: 

 

𝑓𝜃(𝑥) =
1

∑ 𝑒
𝜃𝑗
𝑇𝑥𝑖𝐶

𝑗=1

[
 
 
 
 𝑒

𝜃1
𝑇𝑥𝑖

𝑒𝜃2
𝑇𝑥𝑖

…

𝑒𝜃𝐶
𝑇𝑥𝑖]

 
 
 
 

= [

𝑝(𝑦𝑖 = 1|𝑥𝑖; 𝜃1)

𝑝(𝑦𝑖 = 2|𝑥𝑖; 𝜃2)
…

𝑝(𝑦𝑖 = 𝐶|𝑥𝑖 ; 𝜃𝐶)

]

     (3) 

where is the parameter mapping toward the jthe 

class (s.t. 𝑏𝑗 + 𝑊𝑗𝑥). 

In our improved cross-entropy, misclassification 

errors are punished according the costs in cost 

matrix. The goal is to approximate the prediction 

value to the actual output: 

ℒ(𝑂, 𝑦) = −∑(𝑦𝑜,𝑐 log 𝑝(𝑦𝑖 = 1|𝑥𝑖 ; 𝜃𝑖))

𝐶

𝑖=1

 

Where 𝑦𝑜,𝑐 is a binary value indicating the accurate 

prediction for instance o, where is 𝑦𝑜,𝑐 is “1” when 

the prediction is correct, otherwise, the values is “0” 

for the actual category. The probability of the 

predicted class is changed by incorporating the 

related class-dependent cost: 

𝑝(𝑦𝑝 = 1|𝑥𝑖) =
𝛾𝑖,𝑗 . exp(𝑂𝑖)

∑ exp(𝑂𝑖)
𝐶
𝑖=1

 

4. Experimental setup 

This section compares the performance of our 

developed cost-sensitive SAE (termed ICSAE) and 

CNN (termed ICSCNN) with other models. These 

models include non-sensitive versions for SAE and 

CNN, combining models with the SMOTE method, 

which is a preprocessing sampling technique, and 

the NADE method [12]. The Keras and Tensorflow 

libraries were used as backends to run DL models. 

The number of 100 epochs was considered for 

model training. An early stopping technique was 

applied to mitigate the overfitting problem, where 

the training phase stops when the amount of error on 

the validation set remains unchanged for certain 

iterations. The Adam is used as an optimizer 

function for DL models. The ratios of the training 

set, validation set, and the testing sets are set to be 

0.8, 0.1, and 0.1, respectively. 

4.1. Datasets description 

In this study, two datasets of UNSW-NB15 [24] and 

NSL-KDD are used to train and evaluate DL models 

for intrusion detection. The UNSW-NB15 dataset 

has been collected at the period of January and 

February 2015. Both attack and normal traffic 

against servers were created using an automatic 

attack generation tool (IXIA PerfectStorm). This 

dataset has nine types of attacks, including 

“Fuzzers”, “Analysis”, “Backdoors”, “DoS”, 

“Exploits”, “Generic”, “Reconnaissance”, 

“Shellcode”, and “Worms”. NSL-KDD dataset 

consists of five classes of “DoS”, “Probe”, “U2R”, 

“R2L”, and “Normal”. 

 

Table 2 shows the statistics of these two datasets. 

The UNSW-NB15 dataset consists of 2.2 million 

samples with nine categories of attacks, of which 

eight are minority classes and the majority of 

instances belong to the normal class (around 88%). 

According to the statistics, Dos and Normal classes 

make the majority size of the dataset, 0.35 and 0.53, 

respectively. On the other hand, “Probe”, “R2L”, 

and “U2R” attacks have rarely happened.  

Table 2 Statistics of UNSW-NB15 and NSL-KDD 

datasets 

 

4.2. Evaluation criteria 

In our evaluation, five measures of accuracy (Eq. 4), 

recall (Eq. 5), precision (Eq. 6), and F1-score (Eq. 

7) are employed for evaluation of intrusion 

classification approaches.  

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (4) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (5) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                (6) 

F1-Score = 
2.Recall.Precision

Recall+Precision
  (7) 

      

Datase

t 

Attack type  The 

number 

of 

samples 

Ratio 

UNSW

-NB15 

Normal 1,958,46

7 

0.879 

Exploits 33,422 0.015 

DoS 11,716 0.005 

Backdoor 1,959  0.0008 

Analysis 2,069  0.0009 

Fuzzers 19,578 0.00879 

Generic 187,598 0.084 

Reconnaissan

ce 

10,871 0.004 

Shellcode 1,187 0.0005 

Worms 134 0.00006 

Total 2,227,00

0 

 

NSL-

KDD 

DoS 53,383 0.356 

Probe 14,077 0.088 

U2R 3,751 0.022 

R2L 252 0.000061

4 

Normal 77,053 0.532 

Total 148,516  
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In these equations, TP, FP, TN, and FN are the 

number of True Positives, False Positives, True 

Negatives, and False Negatives, respectively.  

 

4.3. Results on UNSW-NB15 dataset 

Fig. 5 shows the confusion matrix for the proposed 

cost-sensitive models, ICSCNN (5a) and ACSAE 

(5b). 

 
(b) ICSAE 

 
(a) ICSCNN 

Fig. 5 Confusion matrix for the UNSW-NB15 

dataset 

Table 3 shows recall evaluation of our developed 

models compared with the other classifiers. The 

recall is a major criterion for evaluating the 

effectiveness of classifiers because the number of 

detecting low-frequency samples as the majority 

class is great (i.e., the number of false negatives for 

the low-frequency class is high). Thus, the recall 

value for the minority classes is less than for the 

majority classes. Fig. 6 presents the average recall 

ratios for the low-frequency categories. The results 

demonstrate integrating cost-sensitive strategy into 

DL models could improve recall values for minority 

categories (such as “DoS”, “Backdoor”, 

“Shellcode”, and “Exploits”). This means that our 

models were able to correctly identify minority 

classes. ICSCNN and ICSAE performed better than 

the other methods. In general, the proposed method 

was able to obtain an average recall ratio of 87% for 

low-frequency classes. 

 

Table 3: Comparison of recall ratio for intrusion detection models on UNSW-NB15 dataset 

 ICSA

E 

ICSCN

N 

SA

E 

CN

N 

SMOTE+SA

E 

SMOTE+CN

N 

NAD

E 

Normal 0.998 0.999 0.99 0.992 0.996 0.997 0.997 

Exploits 0.828 0.85 0.728 0.754 0.8 0.815 0.792 

DoS 0.981 0.986 0.971 0.972 0.979 0.98 0.97 

Backdoor 0.77 0.83 0.54 0.62 0.756 0.78 0.72 

Analysis 0.891 0.916 0.773 0.842 0.884 0.89 0.858 

Fuzzers 0.996 0.997 0.99 0.991 0.994 0.995 0.996 

Generic 0.987 0.989 0.956 0.974 0.987 0.988 0.985 

Reconnaissanc

e 

0.969 0.977 0.943 0.954 0.965 0.969 0.963 

Shellcode 0.832 0.857 0.671 0.8 0.812 0.829 0.728 

Worms 0.986 0.988 0.951 0.975 0.986 0.987 0.983 

Average 0.923 0.938 0.851 0.887 0.915 0.923 0.899 

 
Fig. 6 Performance of DL models for the minority classes on the UNSW-NB15 dataset 

 

Since the number of false positive for high-

frequency classes increases when training DL 

models on the imbalanced data, precision ratio of the 

low-frequency categories is larger than that of high-

frequency classes. Table 4 confirms this issue, 

where the precision values are higher for the low-

frequency attacks than their recall ratios. From the 

table, the precision ratio of ICSCNN with 99.4% is 

higher than other DL models. 
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Table 4 Precision comparison of DL models for intrusion detection on UNSW-NB15 dataset 

 ICSA

E 

ICSCN

N 

SA

E 

CN

N 

SMOTE+SA

E 

SMOTE+CN

N 

NAD

E 

Normal 0.997 0.997 0.982 0.98 0.995 0.997 0.994 

Exploits 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

DoS 0.997 0.997 0.982 0.98 0.995 0.997 0.994 

Backdoor 0.99 0.992 0.967 0.976 0.983 0.986 0.988 

Analysis 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Fuzzers 0.989 0.992 0.98 0.984 0.99 0.99 0.985 

Generic 0.988 0.99 0.978 0.98 0.987 0.99 0.983 

Reconnaissanc

e 

0.99 0.992 0.99 0.987 0.99 0.991 0.978 

Shellcode 1.0 1.0 0.99 0.99 1.0 1.0 1.0 

Worms 0.99 0.99 0.987 0.984 0.986 0.99 0.99 

Average 0.993 0.994 0.985 0.987 0.991 0.993 0.991 

 

The F1-Score is a harmonic mean of recall and 

precision criteria. Table 5 shows compares F1-Score 

ratios of intrusion detection models. According to 

the results, ICSCNN achieved the highest 

performance with 96.7%. Overall, the proposed 

models can achieve an average of 96.4% for the F1-

Score. This shows that our cost-sensitive DL method 

can optimize classifiers by considering the 

misclassification costs when computing loss value. 

This enables classifiers to learn features with a 

sensitive trend towards low-frequency attacks.

 

Table 5 F1-Score comparison of DL models for intrusion detection on UNSW-NB15 dataset 

 ICSA

E 

ICSCN

N 

SA

E 

CN

N 

SMOTE+SA

E 

SMOTE+CN

N 

NAD

E 

Normal 0.87 0.907 0.701 0.837 0.861 0.876 0.765 

Exploits 0.906 0.919 0.843 0.860 0.889 0.898 0.884 

DoS 0.989 0.991 0.976 0.976 0.987 0.988 0.982 

Backdoor 0.994 0.995 0.978 0.984 0.989 0.991 0.992 

Analysis 0.942 0.956 0.872 0.914 0.938 0.942 0.924 

Fuzzers 0.992 0.994 0.985 0.987 0.992 0.992 0.990 

Generic 0.908 0.923 0.800 0.885 0.896 0.907 0.843 

Reconnaissanc

e 0.979 0.984 0.966 0.970 0.977 0.980 0.970 

Shellcode 0.987 0.989 0.967 0.977 0.987 0.989 0.984 

Worms 0.988 0.989 0.969 0.979 0.986 0.988 0.986 

Average 0.961 0.967 0.917 0.987 0.954 0.959 0.940 

Fig. 7 shows the effect of the number of epochs on 

the training accuracy of intrusion detection methods. 

We can see that our cost-sensitive methods in the 

20th period reached maximum accuracy, with 98% 

accuracy. Conversely, the training accuracy of the 

other methods reached a maximum accuracy in more 

epochs 97%. 

 

 
(a) Training accuracy 

 
(b) Training loss 

Fig. 7 Training accuracy and loss value of intrusion detection models for UNSW-NB15 dataset 
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4.4. Results on NSL-KDD dataset 

 

This section investigates the performance of the 

developed models in comparison with similar 

methods for the NSL-KDD dataset. Figs. 8a and 8b 

show the confusion matrices of the proposed 

methods for the NSL-KDD dataset. 

 
(b) ICSAE 

 
(a) ICSCNN 

Fig. 8 Confusion matrix for the NSL-KDD dataset 

 

Table 6 shows the recall of DL-based intrusion 

detection models for the NSL-KDD dataset. The 

experimental results showed that the performance of 

the models is low for the minority classes (“Probe”, 

“R2L”, and “U2R”). The models had the lowest 

recall rates for the U2R class because the number of 

events for this class is very low, 71.6% on average. 

The ICSCNN model with 83% and the SAE model 

with 54% have the highest and lowest performance 

for the U2R class, respectively. Overall, the 

ICSCNN model was able to provide the highest call 

rate with 0.9. 

 

Table 6: Comparison of recall ratio for intrusion detection models on the NSL-KDD dataset 

 ICSAE ICSCNN SAE CNN SMOTE+SAE SMOTE+CNN NADE 

DoS 0.998 0.999 0.99 0.992 0.996 0.997 0.997 

Probe 0.828 0.85 0.728 0.754 0.8 0.815 0.792 

R2L 0.832 0.857 0.671 0.8 0.812 0.829 0.728 

U2R 0.77 0.83 0.54 0.62 0.756 0.78 0.72 

Normal 0.996 0.997 0.99 0.991 0.994 0.995 0.996 

Average 0.8848 0.9066 0.7838 0.8314 0.8716 0.8832 0.8466 

 

Fig. 9 shows the performance of intrusion detection models for the minority classes. The proposed methods had 

the highest recall ratio, which is about 80%. 

 
Fig. 9 Performance of DL models for the minority classes on the NSL-KDD dataset 

 

Table 7 compares the performance of our proposed 

cost-sensitive models with the other models in terms 

of precision criteria is presented in Table 7. Minority 

classes have a higher degree of precision than the 



 57                                                                                                     4، شماره 1د ه علمي دانشگاه آزاد اسلامي، مجل، نشريسيستم هاي اطلاعاتي هوشمند

majority classes because the number of samples that 

are mistakenly classified as the majority classes is 

high. 

Table 7: Comparison of precision ratio for intrusion 

detection models on the NSL-KDD dataset 

 ICSAE ICSCNN SAE CNN SMOTE+SAE SMOTE+CNN NADE 

DoS 0.997 0.997 0.982 0.98 0.995 0.997 0.994 

Probe 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

R2L 0.999 0.998 0.982 0.98 0.995 0.997 0.994 

U2R 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Normal 0.99 0.992 0.967 0.976 0.983 0.986 0.988 

Average 0.9972 0.9974 0.9862 0.9872 0.9946 0.996 0.9952 

 

Table 8 shows the F1-Score values obtained from 

intrusion detection models. The ICSCNN model had 

the highest value (94.7%) while the SAE model had 

the lowest performance with 86%. 

 

Table 8: Comparison of F1-Score ratio for intrusion detection models on the NSL-KDD dataset 

 ICSAE ICSCNN SAE CNN SMOTE+SAE SMOTE+CNN NADE 

DoS 0.9975 0.997 0.985 0.985 0.995 0.997 0.995 

Probe 0.905 0.918 0.842 0.859 0.888 0.898 0.883 

R2L 0.907 0.922 0.797 0.88 0.894 0.905 0.84 

U2R 0.87 0.907 0.701 0.765 0.861 0.876 0.837 

Normal 0.992 0.994 0.978 0.983 0.988 0.99 0.991 

Average 0.934 0.947 0.86 0.894 0.925 0.933 0.909 

Fig. 10 shows the accuracy ratio and error ratio of 

DL models for detecting intrusion in the training 

phase. As can be seen, the ICSCNN algorithm has 

achieved the highest training accuracy and all 

models have reached maximum performance in 

epochs between 35 and 40. 

 
(a) Training accuracy 

 
(b) Training loss 

Fig. 10 Training accuracy and loss of intrusion detection models for the NSL-KDD dataset 

5. Conclusions 

This paper addressed the class imbalance problem in 

intrusion detection systems. A modified loss 

function was proposed using the cost-sensitive 

strategy, which considers the costs assigned to 

different classes in the classification error 

calculation step. In the proposed method, the 

categorical cross-entropy loss function was 

improved for the CNN and SAE models. To build 

DL models resistant against unbalanced data, a 

varied cost matrix generation approach is proposed. 

In this approach, the dataset is divided into several 

parts and a cost matrix is generated based on the 

distribution of samples for each part. The UNSW-

NB15 and NSL-KDD datasets were used to assess 

the developed approach. Accuracy, recall, precision, 

and F1-Score criteria were used to compare the 

proposed method with similar models. The two cost-

sensitive algorithms of CNN and SAE were 

compared with their insensitive versions as well as 

in combination with SMOTE technique and NADE 

method. The results showed that the proposed 

method has higher detection ability for the minority 

classes. On average, the proposed model has 

increased the intrusion detection performance by 

about 3%. 

Computer networks, especially IoT environments, 

generate a huge amount of data at tremendous speed. 

Besides, the traffic capacity of IoT networks has 

been greatly increased in order to comfort the 

transfer of data in the networks. Therefore, intrusion 

detection systems need to be performed rapidly. 
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Developing a system that can scan data at high speed 

is a basic need in intrusion detection. In fact, both 

the volume of data and the speed of data production 

must be managed. Reducing IDS computation time 

for Big data using parallel/distributed processing 

can be considered for future work. Large data 

processing technologies such as CPU/GPU, 

Hadoop, and Spark can be used to increase the 

performance of the proposed model. 
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