
 سيستم هاي اطلاعاتي هوشمند

 دانشگاه آزاد اسلامي نشريه علمي

 4 شماره، 1مجلد

 58-50صفحات

 پژوهشیمقاله

Deep learning and a cost-sensitive strategy for intrusion detection system

Maryam Pournaghdi

Department of Computer Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran

Abstract

Intrusions and attacks are critical problems in network security and privacy. There are many studies on intrusion detection,

most of which use traditional data mining algorithms to detect intrusion. Intrusion detection using deep learning is a new

approach to cyber security. Unbalanced data is one of the major challenges in intrusion detection in which the number of

samples of some classes (majority) is much higher than other classes (minority) which increases the rate of incorrect

classifications for minority classes and the created model tends towards the majority class. Although some studies have tried

to address this issue by using resampling techniques, they are not effective. This research uses deep learning that combines the

phases of classification and automatic feature extraction. Unlike previous approaches, the proposed method addresses the class

imbalance problem during model training. The developed mechanism uses a cost-sensitive learning strategy and determines a

cost for each misclassification based on the class distribution. These costs are considered during training when there are

incorrect classifications to fit the data. The efficiency of the designed approach is assessed using different criteria such as

accuracy, recall, precision, and F1-Score by the same method. Experiments have shown that the proposed method can improve

the classification performance by an average of 3%.

Keywords: Intrusion detection, Imbalanced data, Deep learning, Cost-sensitive learning

1. Introduction

Security and privacy issues are the major challenges

in computer networks because many computer

networks (such as the Internet of Things) are based

on the conventional Internet model without security

[1][2]. Network attacks occur for a variety of

reasons, such as obtaining sensitive information,

disrupting data integrity, and damaging services in

computer networks. Intrusion Detection System

(IDS) is a second line of defense mechanism that is

often used in conjunction with other security

mechanisms such as access control and encryption

techniques to secure IoT networks against cyber-

attacks. To ensure the security of computer

networks, the use of IDS is very important to prevent

rapid attacks and protect privacy [3]. IDS

components can be contracted in a hierarchical

architecture to transfer the parsed data in layers.

Deep learning (DL) is one of subfields of machine

learning has attracted attention in intrusion

detection. This is because hand-crafted features are

not required in DL algorithms that make them

powerful extracting knowledge without the help of

experts [4]. In computer networks, the distribution

ratio between some classes is significantly higher

than other classes. This issue refers to the class

imbalance problem, where some attacks are low-

frequent and cannot be detected carefully because

there a bias towards the high-frequency classes.

Thus, the accuracy of the classifier is high for the

majority classes, while the accuracy is low for the

minority attacks. Resampling strategies, such as

undersampling and oversampling are simple

techniques, but they introduce some challenges,

such as information loss, high complexity, and over-

fitting [1].

To address the challenges related to the resampling

strategies, cost-sensitive learning is a useful strategy

that builds DL models strong against unbalanced

datasets. In this strategy, each misclassification is

given a cost and these costs are considered during

DL model training in loss function. A higher cost is

often assigned to the minority class than the majority

one. Cost-sensitive learning has achieved promising

results in DL algorithms, such as auto-encoder

[5][6][1], Deep Belief Networks (DBN) [7],

Convolution neural network (CNN) [8], deep neural

network (DNN) [9], and multilayer perceptron

(MLP) [10].

In this study, an intrusion detection framework for

computer network security is developed based on a

cost-sensitive DL approach. We integrate cost-

sensitive learning into two DL classifiers, including

SAE and CNN. In both models, the cross-entropy

cost function is improved considering class-

dependent costs. In each epoch of DL training,

diverse cost matrices are generated according data

distribution. In this way, strong representations can

 51 4، شماره 1د ه علمي دانشگاه آزاد اسلامي، مجل، نشريسيستم هاي اطلاعاتي هوشمند

be trained. To demonstrate the superiority of our

proposed approaches over other DL-based intrusion

detection methods, the UNSW-NB15 and NSL-

KDD datasets are used.

Structure of this study is as follows: Section 2

summarizes related works on deep learning-based

intrusion detection methods. Section 3 presents a

cost-sensitive learning-aided DL mechanism for

mitigating impact of imbalanced data on intrusion

detection systems. Some experiments are carried in

Section 4 to evaluate performance of our developed

model. Finally, Section 5 presents a conclusion of

the paper.

2. Related works

In recent years, DL has attracted a great attention in

network intrusion detection. Javaid et al. [11]

developed an IDS using self-taught learning based on

sparse autoencoder. They evaluated their system on

NSL-KDD dataset. This system includes two phases:

high-level feature representations are extracted from

unlabeled data using unsupervised learning at the

first stage. In the second phase, the learnt features are

used for classification task on the labeled data. Non-

symmetric deep auto-encoder was used by Shone et

al. [12] for unsupervised learning. A classifier by

combining stacked auto-encoder and random forest

was developed. The authors analyzed their model

using the KDD Cup99 and NSL-KDD datasets. A

two-stage SAE model was developed by Khan et al.

[13]. A binary classification between normal or

abnormal traffic is done in the first phase and the

attacks type is detected in the second phase.

Vinayakumar et al. [14] developed network-based

IDS and host-based IDS by modeling a MLP. They

used text representation methods in NLP (e.g., Bag-

of-Words (BoW), N-grams, and Keras Embedding)

to capture the contextual information in the form of

feature vectors. Ge et al. [15] developed a feed-

forward neural network (FNN) architecture with

three hidden layers and 512 neurons in each layer.

They also used three regularization techniques of L1,

L2, and dropout.

An IDS using recurrent neural networks (RNN) was

developed in [16]. Both binary detection and

multiclass detection were considered. Diverse

models with different learning rate and neurons are

trained. The performance of the models was

evaluated on NSL-KDD dataset. Tang et al. [17] built

a DNN-based intrusion detection mechanism for

Software Defined Networking (SDN). The DNN

model included three hidden layers with 12, 6, and 3

neurons, respectively. The model was trained on the

NSL-KDD Dataset.

Some studies have combined DL models to

strengthen intrusion detection systems. A

combination of CNN and weight-dropped Long

Short-Term Memory (LSTM) was developed, where

features are extracted using a two-layer CNN

followed by a weight-dropped LSTM [18]. A deep

blockchain framework based on Bidirectional

LSTM was designed in [19] to provide secure data

exchange and migration between multi-cloud IoT

services. A two-stage mechanism was developed in

[20], where a single-hidden layer was employed at

the first stage to distinguish normal and intrusion

traffics. In the second phase, DNN and LSTM

techniques were applied to identify intrusion

activities. A combination of DL and support vector

machines (SVM) was introduced in [21]. Sparse

autoencoder was employed for feature learning and

dimensionality reduction. The classification is done

using SVM.

 Zhang et al. [22] developed a self-adaptive DBN

model based on an improved version of the genetic

algorithm to find the best values of hidden layers and

neurons in each layer adaptively. DL-based

Intrusion Detection System (DLIDS) [23] is a

combination of Spider Monkey Optimization

algorithm (SMO) and the Stacked-Deep Polynomial

Network (SDPN) for IoT security. In the

preprocessing step, Minkowski distance and nearest

neighbour computation are applied to clean the

dataset. The SMO algorithm is then employed for

feature selection.

3. Proposed methodology

This section presents a cost-based DL model

including four phases: data preprocessing, cost

matrix generation, DL architecture, and improved

loss function (Fig. 1).

Fig. 1. The framework for our methodology

3.1. Data Preprocessing

In the preprocessing stage, irrelevant features like

the source/destination IPs and port numbers are first

deleted. Nominal columns (e.g., “proto”, “state”,

and “service”) are then converted to numerical

values through the ordinal encoding technique. We

apply Min-Max normalization to transform all

values in the range [0,1] (Eq. 1). This is because the

difference between values is large that affects the

convergence rate and model training.

𝑓𝑖,𝑗 =
𝑦𝑖,𝑗−min(𝑦𝑖)

max(𝑦𝑖)−min(𝑦𝑖)

 (1)

where 𝑦𝑖,𝑗is the value j of the feature i and 𝑦𝑖

represents the feature i.

3.2. Cost matrix generation

Generating a cost matrix is a critical task in cost-

sensitive learning to determine misclassification

 Deep learning and a cost-sensitive strategy for intrusion52

cost of each category. The cost matrix is adopted

when computing loss value. Unlike many previous

approaches for cost matrix generation that the

user/specialist manually determines the costs for

each class, our presented technique uses a

formulation to automatically define the costs

without user intervention. These cost values are

defined by calculating the data statistics of

categories. Fig. 2 depicts a general framework of

cost matrix generation.

Fig. 2 Cost matrix generation process

First, data distribution of each category is

determined to be considered in generating the cost

matrix based on a heuristic designed for cost

definition. Low-frequency classes are given high

costs and high-frequency classes are given low cost

values. Each cost of classifying category i as

category j is determined using Eq. 2.

{
𝛾𝑖,𝑗 =

𝛼𝑖

𝛼𝑖+𝛼𝑗
𝑖, 𝑗 = 1,2, … , 𝐶

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜𝑖 ≠ 𝑗

 (2)

The terms 𝛼𝑖 and 𝛼𝑗 are distribution of classes i and

j, respectively. If there is no sample for a class in a

partition (i.e., 𝛼𝑖 or 𝛼𝑗=0), the costs related to the

class is determined to be zero. Indeed, all cells in the

corresponding row and column are set to be zero.

In the cost matrix, the diagonal row refers to the

optimal vector. It indicates the correct classifications

and the values in this vector are zero. The costs in

other cells are non-negative (i.e., 𝛾𝑖,𝑗 > 0). Table 1

presents an example of a cost matrix for a three-

classification task.

Table 1: An example of a cost matrix with three

classes

 Predicted

C1

Predicted

C2

Predicted

C3

Actual

C1

0 𝛾1,2 𝛾1,3

Actual

C2

𝛾2,1 0 𝛾2,3

Actual

C3

𝛾3,1 𝛾3,2 0

3.3. Deep learning models architectures

The architectures of our developed models are

described in this section. Our designed CNN model

consists of a 1D input layer and 3 convolution layers

(Fig. 3). Each convolution layer is followed by a

ReLU activator and a max-pooling layer. The size of

each filter in the convolution layer is 8×1 with

stride=1. Moreover, the size of the max-pooling is

4×1 with stride=2. Batch normalization and a

dropout layer with the ratio of 0.05 are applied after

each ReLu. At the end of the CNN model, two fully-

connected layers are employed to detect attacks.

Fig. 3 Our CNN architecture

Our SAE architecture proposed in this study has two

auto-encoders, each with two encoding layers and

two decoding layers (Fig. 4).

Fig. 4. The proposed SAE architecture

3.4. Cost-Sensitive loss function

A new cross-entropy loss function is proposed in

this section with the aim of making DL models more

sensitive to misclassification of the low-frequency

attacks than the majority categories. During the

training phase, class-related costs are considered to

optimize DL parameters according to the class

imbalance problem. Unlike data-level techniques

(e.g., oversampling and undersampling), the

developed models do not change the data

distribution, which results in reducing computation

time of the training process.

Our new loss function aims to penalize

misclassifications according to corresponding costs.

This penalty value is larger when a low-frequency

sample is detected as a high-frequency category than

when a high-frequency sample is wrongly detected

as a low-frequency class. These misclassification

costs are found the cost matrix. This technique

intends to enhance the cross-entropy loss function

by injecting the class-dependent costs. In fact, the

output of the Softmax layer, which is in the form of

probabilities, is considered as the input of the cost

function to calculate the amount of cost-sensitive

loss. The reason for choosing cross-entropy is that it

 53 4، شماره 1د ه علمي دانشگاه آزاد اسلامي، مجل، نشريسيستم هاي اطلاعاتي هوشمند

can perform better than other cost functions in most

cases. Besides, cross-entropy can prevent the

slowing down of learning, which is one of the

problems with the mean square error (MSE)

function in learning.

Before illustration of our cost-sensitive DL

mechanism, how the Softmax layer works is

explained. Let us the output layer is{𝑋, 𝑌} =
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑚 , 𝑦𝐶)}, where 𝑥𝑖 ∈ ℝ𝑑×1

and 𝑦𝑖 ∈ ℝ𝐶×1 (d is the number of neurons in the last

layer and C is the number of categories). Softmax

layer calculates the probability that object i (𝑥𝑖)

belongs to each class, as expresses bellows:

𝑓𝜃(𝑥) =
1

∑ 𝑒
𝜃𝑗
𝑇𝑥𝑖𝐶

𝑗=1

[

 𝑒

𝜃1
𝑇𝑥𝑖

𝑒𝜃2
𝑇𝑥𝑖

…

𝑒𝜃𝐶
𝑇𝑥𝑖]

= [

𝑝(𝑦𝑖 = 1|𝑥𝑖; 𝜃1)

𝑝(𝑦𝑖 = 2|𝑥𝑖; 𝜃2)
…

𝑝(𝑦𝑖 = 𝐶|𝑥𝑖 ; 𝜃𝐶)

]

 (3)

where is the parameter mapping toward the jthe

class (s.t. 𝑏𝑗 + 𝑊𝑗𝑥).

In our improved cross-entropy, misclassification

errors are punished according the costs in cost

matrix. The goal is to approximate the prediction

value to the actual output:

ℒ(𝑂, 𝑦) = −∑(𝑦𝑜,𝑐 log 𝑝(𝑦𝑖 = 1|𝑥𝑖 ; 𝜃𝑖))

𝐶

𝑖=1

Where 𝑦𝑜,𝑐 is a binary value indicating the accurate

prediction for instance o, where is 𝑦𝑜,𝑐 is “1” when

the prediction is correct, otherwise, the values is “0”

for the actual category. The probability of the

predicted class is changed by incorporating the

related class-dependent cost:

𝑝(𝑦𝑝 = 1|𝑥𝑖) =
𝛾𝑖,𝑗 . exp(𝑂𝑖)

∑ exp(𝑂𝑖)
𝐶
𝑖=1

4. Experimental setup

This section compares the performance of our

developed cost-sensitive SAE (termed ICSAE) and

CNN (termed ICSCNN) with other models. These

models include non-sensitive versions for SAE and

CNN, combining models with the SMOTE method,

which is a preprocessing sampling technique, and

the NADE method [12]. The Keras and Tensorflow

libraries were used as backends to run DL models.

The number of 100 epochs was considered for

model training. An early stopping technique was

applied to mitigate the overfitting problem, where

the training phase stops when the amount of error on

the validation set remains unchanged for certain

iterations. The Adam is used as an optimizer

function for DL models. The ratios of the training

set, validation set, and the testing sets are set to be

0.8, 0.1, and 0.1, respectively.

4.1. Datasets description

In this study, two datasets of UNSW-NB15 [24] and

NSL-KDD are used to train and evaluate DL models

for intrusion detection. The UNSW-NB15 dataset

has been collected at the period of January and

February 2015. Both attack and normal traffic

against servers were created using an automatic

attack generation tool (IXIA PerfectStorm). This

dataset has nine types of attacks, including

“Fuzzers”, “Analysis”, “Backdoors”, “DoS”,

“Exploits”, “Generic”, “Reconnaissance”,

“Shellcode”, and “Worms”. NSL-KDD dataset

consists of five classes of “DoS”, “Probe”, “U2R”,

“R2L”, and “Normal”.

Table 2 shows the statistics of these two datasets.

The UNSW-NB15 dataset consists of 2.2 million

samples with nine categories of attacks, of which

eight are minority classes and the majority of

instances belong to the normal class (around 88%).

According to the statistics, Dos and Normal classes

make the majority size of the dataset, 0.35 and 0.53,

respectively. On the other hand, “Probe”, “R2L”,

and “U2R” attacks have rarely happened.

Table 2 Statistics of UNSW-NB15 and NSL-KDD

datasets

4.2. Evaluation criteria

In our evaluation, five measures of accuracy (Eq. 4),

recall (Eq. 5), precision (Eq. 6), and F1-score (Eq.

7) are employed for evaluation of intrusion

classification approaches.

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4)

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5)

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6)

F1-Score =
2.Recall.Precision

Recall+Precision
 (7)

Datase

t

Attack type The

number

of

samples

Ratio

UNSW

-NB15

Normal 1,958,46

7

0.879

Exploits 33,422 0.015

DoS 11,716 0.005

Backdoor 1,959 0.0008

Analysis 2,069 0.0009

Fuzzers 19,578 0.00879

Generic 187,598 0.084

Reconnaissan

ce

10,871 0.004

Shellcode 1,187 0.0005

Worms 134 0.00006

Total 2,227,00

0

NSL-

KDD

DoS 53,383 0.356

Probe 14,077 0.088

U2R 3,751 0.022

R2L 252 0.000061

4

Normal 77,053 0.532

Total 148,516

 Deep learning and a cost-sensitive strategy for intrusion54

In these equations, TP, FP, TN, and FN are the

number of True Positives, False Positives, True

Negatives, and False Negatives, respectively.

4.3. Results on UNSW-NB15 dataset

Fig. 5 shows the confusion matrix for the proposed

cost-sensitive models, ICSCNN (5a) and ACSAE

(5b).

(b) ICSAE

(a) ICSCNN

Fig. 5 Confusion matrix for the UNSW-NB15

dataset

Table 3 shows recall evaluation of our developed

models compared with the other classifiers. The

recall is a major criterion for evaluating the

effectiveness of classifiers because the number of

detecting low-frequency samples as the majority

class is great (i.e., the number of false negatives for

the low-frequency class is high). Thus, the recall

value for the minority classes is less than for the

majority classes. Fig. 6 presents the average recall

ratios for the low-frequency categories. The results

demonstrate integrating cost-sensitive strategy into

DL models could improve recall values for minority

categories (such as “DoS”, “Backdoor”,

“Shellcode”, and “Exploits”). This means that our

models were able to correctly identify minority

classes. ICSCNN and ICSAE performed better than

the other methods. In general, the proposed method

was able to obtain an average recall ratio of 87% for

low-frequency classes.

Table 3: Comparison of recall ratio for intrusion detection models on UNSW-NB15 dataset

 ICSA

E

ICSCN

N

SA

E

CN

N

SMOTE+SA

E

SMOTE+CN

N

NAD

E

Normal 0.998 0.999 0.99 0.992 0.996 0.997 0.997

Exploits 0.828 0.85 0.728 0.754 0.8 0.815 0.792

DoS 0.981 0.986 0.971 0.972 0.979 0.98 0.97

Backdoor 0.77 0.83 0.54 0.62 0.756 0.78 0.72

Analysis 0.891 0.916 0.773 0.842 0.884 0.89 0.858

Fuzzers 0.996 0.997 0.99 0.991 0.994 0.995 0.996

Generic 0.987 0.989 0.956 0.974 0.987 0.988 0.985

Reconnaissanc

e

0.969 0.977 0.943 0.954 0.965 0.969 0.963

Shellcode 0.832 0.857 0.671 0.8 0.812 0.829 0.728

Worms 0.986 0.988 0.951 0.975 0.986 0.987 0.983

Average 0.923 0.938 0.851 0.887 0.915 0.923 0.899

Fig. 6 Performance of DL models for the minority classes on the UNSW-NB15 dataset

Since the number of false positive for high-

frequency classes increases when training DL

models on the imbalanced data, precision ratio of the

low-frequency categories is larger than that of high-

frequency classes. Table 4 confirms this issue,

where the precision values are higher for the low-

frequency attacks than their recall ratios. From the

table, the precision ratio of ICSCNN with 99.4% is

higher than other DL models.

 55 4، شماره 1د ه علمي دانشگاه آزاد اسلامي، مجل، نشريسيستم هاي اطلاعاتي هوشمند

Table 4 Precision comparison of DL models for intrusion detection on UNSW-NB15 dataset

 ICSA

E

ICSCN

N

SA

E

CN

N

SMOTE+SA

E

SMOTE+CN

N

NAD

E

Normal 0.997 0.997 0.982 0.98 0.995 0.997 0.994

Exploits 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DoS 0.997 0.997 0.982 0.98 0.995 0.997 0.994

Backdoor 0.99 0.992 0.967 0.976 0.983 0.986 0.988

Analysis 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Fuzzers 0.989 0.992 0.98 0.984 0.99 0.99 0.985

Generic 0.988 0.99 0.978 0.98 0.987 0.99 0.983

Reconnaissanc

e

0.99 0.992 0.99 0.987 0.99 0.991 0.978

Shellcode 1.0 1.0 0.99 0.99 1.0 1.0 1.0

Worms 0.99 0.99 0.987 0.984 0.986 0.99 0.99

Average 0.993 0.994 0.985 0.987 0.991 0.993 0.991

The F1-Score is a harmonic mean of recall and

precision criteria. Table 5 shows compares F1-Score

ratios of intrusion detection models. According to

the results, ICSCNN achieved the highest

performance with 96.7%. Overall, the proposed

models can achieve an average of 96.4% for the F1-

Score. This shows that our cost-sensitive DL method

can optimize classifiers by considering the

misclassification costs when computing loss value.

This enables classifiers to learn features with a

sensitive trend towards low-frequency attacks.

Table 5 F1-Score comparison of DL models for intrusion detection on UNSW-NB15 dataset

 ICSA

E

ICSCN

N

SA

E

CN

N

SMOTE+SA

E

SMOTE+CN

N

NAD

E

Normal 0.87 0.907 0.701 0.837 0.861 0.876 0.765

Exploits 0.906 0.919 0.843 0.860 0.889 0.898 0.884

DoS 0.989 0.991 0.976 0.976 0.987 0.988 0.982

Backdoor 0.994 0.995 0.978 0.984 0.989 0.991 0.992

Analysis 0.942 0.956 0.872 0.914 0.938 0.942 0.924

Fuzzers 0.992 0.994 0.985 0.987 0.992 0.992 0.990

Generic 0.908 0.923 0.800 0.885 0.896 0.907 0.843

Reconnaissanc

e 0.979 0.984 0.966 0.970 0.977 0.980 0.970

Shellcode 0.987 0.989 0.967 0.977 0.987 0.989 0.984

Worms 0.988 0.989 0.969 0.979 0.986 0.988 0.986

Average 0.961 0.967 0.917 0.987 0.954 0.959 0.940

Fig. 7 shows the effect of the number of epochs on

the training accuracy of intrusion detection methods.

We can see that our cost-sensitive methods in the

20th period reached maximum accuracy, with 98%

accuracy. Conversely, the training accuracy of the

other methods reached a maximum accuracy in more

epochs 97%.

(a) Training accuracy

(b) Training loss

Fig. 7 Training accuracy and loss value of intrusion detection models for UNSW-NB15 dataset

 Deep learning and a cost-sensitive strategy for intrusion56

4.4. Results on NSL-KDD dataset

This section investigates the performance of the

developed models in comparison with similar

methods for the NSL-KDD dataset. Figs. 8a and 8b

show the confusion matrices of the proposed

methods for the NSL-KDD dataset.

(b) ICSAE

(a) ICSCNN

Fig. 8 Confusion matrix for the NSL-KDD dataset

Table 6 shows the recall of DL-based intrusion

detection models for the NSL-KDD dataset. The

experimental results showed that the performance of

the models is low for the minority classes (“Probe”,

“R2L”, and “U2R”). The models had the lowest

recall rates for the U2R class because the number of

events for this class is very low, 71.6% on average.

The ICSCNN model with 83% and the SAE model

with 54% have the highest and lowest performance

for the U2R class, respectively. Overall, the

ICSCNN model was able to provide the highest call

rate with 0.9.

Table 6: Comparison of recall ratio for intrusion detection models on the NSL-KDD dataset

 ICSAE ICSCNN SAE CNN SMOTE+SAE SMOTE+CNN NADE

DoS 0.998 0.999 0.99 0.992 0.996 0.997 0.997

Probe 0.828 0.85 0.728 0.754 0.8 0.815 0.792

R2L 0.832 0.857 0.671 0.8 0.812 0.829 0.728

U2R 0.77 0.83 0.54 0.62 0.756 0.78 0.72

Normal 0.996 0.997 0.99 0.991 0.994 0.995 0.996

Average 0.8848 0.9066 0.7838 0.8314 0.8716 0.8832 0.8466

Fig. 9 shows the performance of intrusion detection models for the minority classes. The proposed methods had

the highest recall ratio, which is about 80%.

Fig. 9 Performance of DL models for the minority classes on the NSL-KDD dataset

Table 7 compares the performance of our proposed

cost-sensitive models with the other models in terms

of precision criteria is presented in Table 7. Minority

classes have a higher degree of precision than the

 57 4، شماره 1د ه علمي دانشگاه آزاد اسلامي، مجل، نشريسيستم هاي اطلاعاتي هوشمند

majority classes because the number of samples that

are mistakenly classified as the majority classes is

high.

Table 7: Comparison of precision ratio for intrusion

detection models on the NSL-KDD dataset

 ICSAE ICSCNN SAE CNN SMOTE+SAE SMOTE+CNN NADE

DoS 0.997 0.997 0.982 0.98 0.995 0.997 0.994

Probe 1.0 1.0 1.0 1.0 1.0 1.0 1.0

R2L 0.999 0.998 0.982 0.98 0.995 0.997 0.994

U2R 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Normal 0.99 0.992 0.967 0.976 0.983 0.986 0.988

Average 0.9972 0.9974 0.9862 0.9872 0.9946 0.996 0.9952

Table 8 shows the F1-Score values obtained from

intrusion detection models. The ICSCNN model had

the highest value (94.7%) while the SAE model had

the lowest performance with 86%.

Table 8: Comparison of F1-Score ratio for intrusion detection models on the NSL-KDD dataset

 ICSAE ICSCNN SAE CNN SMOTE+SAE SMOTE+CNN NADE

DoS 0.9975 0.997 0.985 0.985 0.995 0.997 0.995

Probe 0.905 0.918 0.842 0.859 0.888 0.898 0.883

R2L 0.907 0.922 0.797 0.88 0.894 0.905 0.84

U2R 0.87 0.907 0.701 0.765 0.861 0.876 0.837

Normal 0.992 0.994 0.978 0.983 0.988 0.99 0.991

Average 0.934 0.947 0.86 0.894 0.925 0.933 0.909

Fig. 10 shows the accuracy ratio and error ratio of

DL models for detecting intrusion in the training

phase. As can be seen, the ICSCNN algorithm has

achieved the highest training accuracy and all

models have reached maximum performance in

epochs between 35 and 40.

(a) Training accuracy

(b) Training loss

Fig. 10 Training accuracy and loss of intrusion detection models for the NSL-KDD dataset

5. Conclusions

This paper addressed the class imbalance problem in

intrusion detection systems. A modified loss

function was proposed using the cost-sensitive

strategy, which considers the costs assigned to

different classes in the classification error

calculation step. In the proposed method, the

categorical cross-entropy loss function was

improved for the CNN and SAE models. To build

DL models resistant against unbalanced data, a

varied cost matrix generation approach is proposed.

In this approach, the dataset is divided into several

parts and a cost matrix is generated based on the

distribution of samples for each part. The UNSW-

NB15 and NSL-KDD datasets were used to assess

the developed approach. Accuracy, recall, precision,

and F1-Score criteria were used to compare the

proposed method with similar models. The two cost-

sensitive algorithms of CNN and SAE were

compared with their insensitive versions as well as

in combination with SMOTE technique and NADE

method. The results showed that the proposed

method has higher detection ability for the minority

classes. On average, the proposed model has

increased the intrusion detection performance by

about 3%.

Computer networks, especially IoT environments,

generate a huge amount of data at tremendous speed.

Besides, the traffic capacity of IoT networks has

been greatly increased in order to comfort the

transfer of data in the networks. Therefore, intrusion

detection systems need to be performed rapidly.

 Deep learning and a cost-sensitive strategy for intrusion58

Developing a system that can scan data at high speed

is a basic need in intrusion detection. In fact, both

the volume of data and the speed of data production

must be managed. Reducing IDS computation time

for Big data using parallel/distributed processing

can be considered for future work. Large data

processing technologies such as CPU/GPU,

Hadoop, and Spark can be used to increase the

performance of the proposed model.

References

[1] Yao, H., Gao, P., Wang, J., Zhang, P., Jiang, C., & Han, Z. (2019). Capsule network assisted IoT traffic

classification mechanism for smart cities. IEEE Internet of Things Journal, 6(5), 7515-7525.

[2] Rezaei, S., & Liu, X. (2019). Deep learning for encrypted traffic classification: An overview. IEEE

communications magazine, 57(5), 76-81.

[3] P. Wang, X. Chen, F. Ye, and Z. Sun, "A survey of techniques for mobile service encrypted traffic

classification using deep learning," IEEE Access, vol. 7, pp. 54024-54033, 2019.

[4] J. Höchst, L. Baumgärtner, M. Hollick, and B. Freisleben, "Unsupervised traffic flow classification using a

neural autoencoder," in 2017 IEEE 42nd Conference on Local Computer Networks (LCN), 2017, pp. 523-526.

[5] Y. Fan, C. Zhang, Z. Liu, Z. Qiu, Y. He, Cost-sensitive stacked sparse auto-encoder models to detect striped

stem borer infestation on rice based on hyperspectral imaging, Knowledge-Based Systems 168 (2019) 49-58.

[6] Wong, M. L., Seng, K., & Wong, P. K. (2020). Cost-sensitive ensemble of stacked denoising autoencoders for

class imbalance problems in business domain. Expert Systems with Applications, 141, 112918.

[7] Zhang, C., Tan, K. C., Li, H., & Hong, G. S. (2018). A cost-sensitive deep belief network for imbalanced

classification. IEEE transactions on neural networks and learning systems, 30(1), 109-122.

[8] S.H. Khan, M. Hayat, M. Bennamoun, F.A. Sohel, R. Togneri, Cost-sensitive learning of deep feature

representations from imbalanced data, IEEE transactions on neural networks and learning systems 29(8)

(2017) 35733587.

[9] S. Wang, W. Liu, J. Wu, L. Cao, Q. Meng, P. J. Kennedy, Training deep neural networks on imbalanced data

sets, IEEE international joint conference on neural networks, 2016, 4368–4374.

[10] Wang, H., Cui, Z., Chen, Y., Avidan, M., Abdallah, A. B., & Kronzer, A. (2018). Predicting hospital

readmission via cost-sensitive deep learning. IEEE/ACM transactions on computational biology and

bioinformatics, 15(6), 1968-1978.

[11] Javaid, A., Niyaz, Q., Sun, W. and Alam, M., 2016. A deep learning approach for network intrusion detection

system. Eai Endorsed Transactions on Security and Safety, 3(9), p.e2.

[12] Shone, N., Ngoc, T.N., Phai, V.D. and Shi, Q., 2018. A deep learning approach to network intrusion

detection. IEEE transactions on emerging topics in computational intelligence, 2(1), pp.41-50.

[13] Khan, F.A., Gumaei, A., Derhab, A. and Hussain, A., 2019. A novel two-stage deep learning model for

efficient network intrusion detection. IEEE Access, 7, pp.30373-30385.

[14] Vinayakumar, R., Alazab, M., Soman, K.P., Poornachandran, P., Al-Nemrat, A. and Venkatraman, S., 2019.

Deep learning approach for intelligent intrusion detection system. IEEE Access, 7, pp.41525-41550.

[15] M. Ge, N. F. Syed, X. Fu, Z. Baig, and A. Robles-Kelly, "Towards a deep learning-driven intrusion detection

approach for Internet of Things," Computer Networks, vol. 186, p. 107784, 2021.

[16] Yin, C., Zhu, Y., Fei, J. and He, X., 2017. A deep learning approach for intrusion detection using recurrent

neural networks. Ieee Access, 5, pp.21954-21961.

[17] Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R. and Ghogho, M., 2016, October. Deep learning

approach for network intrusion detection in software defined networking. In 2016 international conference

on wireless networks and mobile communications (WINCOM) (pp. 258-263). IEEE.

[18] Hassan, M. M., Gumaei, A., Alsanad, A., Alrubaian, M., & Fortino, G. (2020). A hybrid deep learning model

for efficient intrusion detection in big data environment. Information Sciences, 513, 386-396.

[19] Alkadi, O., Moustafa, N., Turnbull, B., & Choo, K. K. R. (2020). A deep blockchain framework-enabled

collaborative intrusion detection for protecting iot and cloud networks. IEEE Internet of Things Journal.

[20] R. Qaddoura, M. Al-Zoubi, H. Faris, and I. Almomani, "A Multi-Layer Classification Approach for Intrusion

Detection in IoT Networks Based on Deep Learning," Sensors, vol. 21, no. 9, p. 2987, 2021.

[21] Al-Qatf, M., Lasheng, Y., Al-Habib, M. and Al-Sabahi, K., 2018. Deep learning approach combining sparse

autoencoder with SVM for network intrusion detection. IEEE Access, 6, pp.52843-52856.

[22] Zhang, Y., Li, P., & Wang, X. (2019). Intrusion detection for IoT based on improved genetic algorithm and

deep belief network. IEEE Access, 7, 31711-31722.

[23] Otoum, Y., Liu, D., & Nayak, A. (2019). DL‐IDS: a deep learning–based intrusion detection framework for

securing IoT. Transactions on Emerging Telecommunications Technologies, e3803.

[24] Moustafa, Nour, and Jill Slay. "UNSW-NB15: a comprehensive data set for network intrusion detection

systems (UNSW-NB15 network data set)." Military Communications and Information Systems Conference

(MilCIS), 2015. IEEE, 2015.

